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Abstract

In this paper we study the geodesic continued fraction in the case of the Shimura
curve coming from the (2, 3, 7)-triangle group. We construct a certain continued
fraction expansion of real numbers using the so-called coding of the geodesics on
the Shimura curve, and prove the Lagrange type periodicity theorem for the ex-
pansion which captures the fundamental relative units of quadratic extensions of
Q(cos(2π/7)) with rank one relative unit groups. We also discuss the convergence
of these continued fractions.
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1 Introduction

Let η := 2 cos
(
2π
7

)
∈ R be the unique positive root of X3+X2−2X−1. The aim of this

paper is to present a geometric construction of the continued fraction expansion such as

(1− η2)
√
η +

√
1 + 3η − 2η2

= (1− η2)
√
η + η2 − η +

2(1 + 2η − 2η2)

η2 − η +
1 + 2η − 2η2

η2 − η +
1 + 2η − 2η2

η2 − η +
1 + 2η − 2η2

· · · (periodic)

(1.1)

with the Lagrange type periodicity property (Theorem 3.4.1 and Theorem 3.4.5). Here
the term (1− η2)

√
η on the both sides should not be deleted in order for this continued

fraction expansion to have the natural geometric meaning. See Example 3.5.2.
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The classical Lagrange theorem in the theory of continued fraction says that the
continued fraction expansion of a given real number becomes periodic if and only if
the number is a real quadratic irrational, and that the period of the continued fraction
expansion describes the fundamental unit of the associated order in the real quadratic
field. Analogously, we know that a given geodesic on the upper-half plane h becomes a
closed geodesic (“periodic”) on the modular curve SL2(Z)\h if and only if the two end
points of the geodesic are conjugate real quadratic irrationals, and that the length of the
closed geodesic becomes the regulator of the associated order in the real quadratic field.
Cf. Theorem 2.1.1.

Our motivation for this study is to extend the Lagrange theorem to number fields
other than real quadratic fields based on this geometric analogue of the Lagrange the-
orem. In a previous paper [3], based on this analogy and inspired by the works of
Artin [2], Sarnak [14], Series [15], Katok [9], Lagarias [12], Beukers [4], etc., we have
studied the geodesic multi-dimensional continued fraction and its periodicity using the
geodesics on the locally symmetric space of SLn. As a result we have established a
geodesic multi-dimensional continued fraction and a p-adelic continued fraction with the
Lagrange type periodicity theorems in the case of extensions E/F of number fields with
rank one relative unit group, and in the case of imaginary quadratic fields with rank one
p-unit group, respectively. Recently the author found that Vulakh [19], [20] had also
used the same idea to compute the fundamental units of some families of number fields.

In this paper, we study the case of Shimura curves, with particular focus on the
specific example coming from (2, 3, 7)-triangle group ∆(2, 3, 7), as it captures most of
the essential features and provides many simple and illustrative examples. We construct
a continued fraction expansion using the geodesics on the Shimura curve ∆(2, 3, 7)\h, and
prove the Lagrange type periodicity theorem for quadratic extensions K/Q(cos(2π/7))
with rank one relative unit groups. We refer to such an extension the “relative rank one”
extension. Although these number fields can already be treated in the previous paper
[3], a major difference is that we can actually expand numbers in the form of “continued
fraction” as in (1.1), while the geodesic multi-dimensional continued fraction in [3] only
gives a sequence of matrices in SLn(Z).

The idea of considering the geodesic continued fraction for some arithmetic Fuchsian
groups is briefly discussed in [7] by Katok. In the final sections (Remark and Examples)
of [7], Katok considers the arithmetic groups coming from quaternion algebras over Q,
and gives some examples of the periodic geodesic continued fraction expansions (Katok
calls this the “code”) of closed geodesics. Some of the essential ideas in this paper are
generalization of Katok’s ideas to our case of quaternion algebras over totally real fields
F , especially Q(cos(2π/7)).

Our strategy is as follows. First we extend the geometric analogue of the Lagrange
theorem (Theorem 2.1.1) to Shimura curves (Proposition 2.2.2). We treat a general
Shimura curve, not only the one coming from the (2, 3, 7)-triangle group, since the ar-
gument does not change too much. Then we restrict ourselves to the Shimura curve
∆(2, 3, 7)\h and construct the continued fraction expansion which can detect the rela-
tive units of the relative rank one quadratic extensions of Q(cos(2π/7)) as the periods

2



of the continued fraction expansion.
For this purpose, we use the technique called the geodesic continued fraction studied

by Series [15], Katok [9], etc. in the field of reduction theory, dynamical systems, etc.
(Some authors refer to the geodesic continued fraction also as the cutting sequence or
the Morse coding.) In order to obtain a convergent continued fraction expansion which
is similar to the classical one such as (1.1), we slightly modify the original algorithm
by considering the regular geodesic heptagon which is the union of some copies of the
fundamental domain. Here we use the generator of ∆(2, 3, 7) given by Elkies [5], Katz-
Schaps-Vishne [11]. See Figure 1 and Definition 3.2.5. Then we consider the formal
continued fraction expansion (3.16) associated to the geodesic continued fraction, and
discuss its convergence. In fact, although the traditional k-th convergent of (3.16) does
not converge in general, we show that there is a natural regularization of the k-th con-
vergent and prove its convergence. See Theorem 3.3.2, Corollary 3.3.3 and Corollary
3.3.4.

Finally we study the Lagrange type periodicity of our continued fraction expansion.
We prove two versions of the periodicity theorem: the first version Theorem 3.4.1 is about
the closed geodesics on the Shimura curve ∆(2, 3, 7)\h, and the second refined version
Theorem 3.4.5 is about geodesics not necessarily closed on ∆(2, 3, 7)\h. Note that it is
a well known fact that the geodesic continued fraction (or the cutting sequence/Morse
code) of a “generic” geodesic becomes periodic if and only if the geodesic becomes
closed geodesic on the quotient space. Cf. Katok-Ugarcovici [10, p.94]. Therefore, (1)
of Theorem 3.4.1, i.e., the periodicity of the geodesic continued fraction expansion itself,
follows naturally from Proposition 2.2.2 and this fact. On the other hand, we need more
argument for the latter part of Theorem 3.4.1 about the fundamental unit. Actually, we
have to take care about the vertices of the fundamental domain in order to obtain the
fundamental units as a minimal period of the continued fraction expansions. We also
need some delicate arguments for the periodicity in Theorem 3.4.5. See also Remark
3.4.6.

Remark on some relevant preceding studies There are many literatures which
study the closed geodesics on hyperbolic surfaces (not necessarily Shimura curves) using
the periodic geodesic continued fractions or the cutting sequences/Morse codes.

For example, in [16], [7], [1], Series, Katok and Abrams-Katok study the reduc-
tion theory for the general Fuchsian groups or the symbolic dynamics associated to the
geodesic flows on hyperbolic sufaces using the cutting sequence for (certain classes of)
Fuchsian groups. As we have mentioned above, in [7], Katok considers the case where
the Fuchsian group is coming from the quaternion algebras over Q. Some new features
in this paper are to give the continued fraction expression such as (3.16) and to estab-
lish an explicit correspondence between the period of continued fraction expansions and
the fundamental relative unit of certain quadratic extensions over the totally real field
Q(cos(2π/7)).

As another example, in [18], Vogeler studies the closed geodesics on the Hurwitz
surface (= ∆(2, 3, 7)\h). He associates each “edge path” the hyperbolic element in the
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(2, 3, 7)-triangle group ∆(2, 3, 7), and hence the geodesic on h which becomes closed on
∆(2, 3, 7)\h. On the other hand the “edge path” admits a very simple combinatorial
description using the words consisting of R and L. Using this correspondence, he com-
binatorially studies the length spectra of closed geodesics on ∆(2, 3, 7)\h. In this paper,
we basically study the reverse direction, that is, we input the geodesics (not necessarily
closed) and output the RL-sequences or the hyperbolic elements if the geodesic contin-
ued fraction becomes periodic, and discuss its relation to unit groups of the quadratic
extension of Q(cos(2π/7)).

To sum up, the upshots of this paper are

(1) to give a new explicit presentation of any real number as a “convergent” continued
fraction such as (1.1) or (3.16) which becomes periodic if and only if the number is
a certain algebraic number, and

(2) to establish the correspondence between the periods of such continued fractions and
the fundamental relative units of the “relative rank one” extensions of Q(cos(2π/7)),

by using the arithmetic and geometric properties of the Shimura curve ∆(2, 3, 7)\h.

2 Preliminaries on Shimura curves

Let F be a totally real number field of degree d ≥ 1 and let OF be the ring of integers
of F . We denote by σ1, . . . , σd the set of archimedean places of F . We also denote by
σi : F ↪→ Fσi := R (1 ≤ i ≤ d) the completion map of F at σi. Let A be a quaternion
algebra over F and let O ⊂ A be a maximal order, i.e., an OF -subalgebra of A which is
finitely generated as an OF -module such that O⊗OF

F = A, and not properly contained
in any other such OF -subalgebra. We denote by O1 := {x ∈ O× | nrd(x) = 1} the
group of reduced norm one units in O, where nrd : A → F is the reduced norm on A.
Suppose that A is unramified at σ1 and ramified at σ2, . . . , σd, i.e., A⊗F Fσ1 ≃ M2(Fσ1)
and A ⊗F Fσi ≃ H (the Hamilton quaternion) for i = 2, . . . , d. Let us fix such an
isomorphism (as Fσ1-algebras)

ι : A⊗F Fσ1

∼→ M2(Fσ1) = M2(R), (2.1)

and set ΓO := ι(O1). By the definition of the reduced norm, ΓO is a subgroup of SL2(R)
and acts on the upper-half plane by the linear fractional transformation.

To be precise, we denote by h := {z = x +
√
−1y ∈ C | Im(z) = y > 0} ⊂ C the

upper-half plane. We naturally embed h into P1(C) := C∪{∞}, the complex projective
line with the usual topology as a manifold. Then the boundary ∂h of h in P1(C) becomes
P1(R) := R ∪ {∞}, and we denote by h := h ∪ P1(R) the compactified upper-half plane
in P1(C). The group GL2(R) acts on P1(C) by the linear fractional transformation:

γz =
az + b

cz + d
for γ =

(
a b
c d

)
∈ GL2(R), z ∈ P1(C), (2.2)
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and the action of SL2(R) preserves h and P1(R). Thus SL2(R) also acts on h and
P1(R) by the linear fractional transformation. We also equip h with the Poincaré metric

ds2 = dx2+dy2

y2
(z = x+

√
−1y ∈ h). The action of SL2(R) on h is preserves this metric,

and hence preserves the geodesics on h.
Then it is known that ΓO acts properly discontinuously on h, and the quotient space

ΓO\h has a canonical structure of an algebraic curve over Q. See Shimura [17]. Algebraic
curves obtained in this way are called the Shimura curves (of level 1).

In the following, for α, β ∈ P1(R) = R ∪ {∞} such that α ̸= β, we mean by the
oriented geodesic on h joining β to α the geodesic on h joining α and β equipped with
the orientation from β to α, and denote by ϖβ→α.

2.1 The modular curve

In this subsection we recall the case of the modular curve SL2(Z)\h as an example of
Shimura curve and explain the geometric interpretation of the Lagrange theorem which
is the key idea for our generalization of the Lagrange theorem.

We consider the case where F = Q, A = M2(Q) and O = M2(Z) ⊂ A. We choose
the canonical base change isomorphism ι = id : M2(Q)⊗R ≃ M2(R) as an identification
(2.1). In this case, we have ΓO = SL2(Z) and the resulting Shimura curve ΓO\h =
SL2(Z)\h is the classical modular curve. Then the following fact, which we shall refer
to as “the geodesic Lagrange theorem” due to its resemblance to the classical Lagrange
theorem, is known about closed geodesics on the modular curve SL2(Z)\h.

Theorem 2.1.1 (The geodesic Lagrange theorem).

(1) Let α, β ∈ R∪ {∞} = ∂h such that α ̸= β, and let ϖ be the oriented geodesic on the
upper-half plane h joining β to α. We denote by ϖ the projection of the geodesic ϖ
on the modular curve. The following conditions are equivalent.

(i) The projected geodesic ϖ becomes a closed geodesic, i.e., ϖ has a compact
image in SL2(Z)\h.

(ii) There exists a hyperbolic element γ ∈ SL2(Z) (i.e., γ has two distinct real
eigenvalues) such that γϖ = ϖ, i.e., γα = α and γβ = β.

(iii) The end points α, β are real quadratic irrationals conjugate to each other over
Q.

(2) Suppose that the above conditions are satisfied. Let Γϖ := {γ ∈ SL2(Z) | γϖ =
ϖ} be the stabilizer subgroup of ϖ in SL2(Z), and define an order Oα in the real
quadratic field Q(α) by Oα := {x ∈ Q(α) | x(Zα + Z) ⊂ (Zα + Z)}. We denote by
O1

α := {x ∈ O×
α | NQ(α)/Q(x) = 1} the group of norm one units. Then the following

natural map is an isomorphism of groups.

Γϖ
∼→ O1

α;

(
a b
c d

)
7→ cα+ d. (2.3)

5



Recall that the Lagrange theorem says that the continued fraction expansion of a
real number α becomes periodic if and only if α is a real quadratic irrational, and we
can actually compute the fundamental unit of Oα from the period of continued fraction
expansion of α. Therefore, Theorem 2.1.1 can be seen as a geometric interpretation of
the Lagrange theorem. For the proof of this theorem, see the discussion in [14, §1.3] or
Proposition 2.2.2 and Lemma 2.2.3 of the present paper.

In the following we first extend Theorem 2.1.1 to the Shimura curves ΓO\h explicitly
(Proposition 2.2.2). Then we restrict ourselves to the special case where ΓO becomes
the so called (2, 3, 7)-triangle group, and construct our continued fraction explicitly. We
first discuss the convergence of the continued fraction expansion, and then deduce the
Lagrange type periodicity theorem from Proposition 2.2.2.

2.2 Closed geodesics on Shimura curves

Now we return to the general setting and use the notations in the beginning of Section
2, i.e., F is a totally real field of degree d, A is a quaternion algebra over F such that
A⊗Q R ≃ M2(R)×Hd−1, O ⊂ A is a maximal order of A, etc. In the following we also
assume that A ̸≃ M2(F ) (hence A is a division algebra), since the case where A ≃ M2(F )
has already explained in the previous subsection. (Note that if A ≃ M2(F ) then F must
be Q by the assumption A⊗Q R ≃ M2(R)×Hd−1.)

For simplicity, we regard F as a subfield of R via the embedding σ1 : F ↪→ Fσ1 = R.
In order to extend Theorem 2.1.1 we fix the identification ι : A ⊗F R ∼→ M2(R) (2.1)
explicitly as follows. Since charF = 0 ̸= 2, the quaternion algebra A is isomorphic to(
a, b

F

)
for some a, b ∈ F×. Here

(
a, b

F

)
is the quaternion algebra generated by the

basis 1, i, j, k of the following form.(
a, b

F

)
= F + Fi+ Fj + Fk (2.4)

i2 = a, j2 = b, ij = −ji = k. (2.5)

By the assumptions A ̸≃ M2(F ) and A ⊗F R ≃ M2(R), we have a, b /∈ (F×)2 and

(sgn(a), sgn(b)) ̸= (−1,−1). Since

(
a, b

F

)
≃
(
a,−ab

F

)
, we assume a, b > 0. We take a

splitting field L := F (
√
b) ⊂ R. For z ∈ L we denote by z̄ the conjugate of z over F , i.e.,

¯ : L → L; z = x+ y
√
b 7→ z̄ = x− y

√
b (x, y ∈ F ). (2.6)
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Then we have an embedding

ι : A ≃
(
a, b

F

)
↪→ M2(L) ⊂ M2(R);



1 7→
(
1 0

0 1

)

i 7→
(
0 a

1 0

)

j 7→
(√

b 0

0 −
√
b

) (2.7)

as F -algebras which induces an isomorphism ι : A⊗F R ∼→ M2(R). Note that the image
of A under ι can be described as follows:

ι : A
∼→
{(

z aw̄
w z̄

)∣∣∣∣ z, w ∈ L

}
⊂ M2(L). (2.8)

In the following we regard A as a subalgebra of M2(L) via this identification. Then
the reduced norm and the reduced trace on A is nothing but the restriction of the
determinant and the trace on M2(L) respectively, i.e.,

nrd = det :A → F ;

(
z aw̄
w z̄

)
7→ zz̄ − aww̄, (2.9)

trd = tr :A → F ;

(
z aw̄
w z̄

)
7→ z + z̄. (2.10)

Now let α, β ∈ R∪{∞} = ∂h such that α ̸= β, and let ϖβ→α be the oriented geodesic
on h joining β to α. We denote by ϖβ→α the projection of ϖβ→α on the Shimura curve
ΓO\h. Let

Γϖβ→α
:= {γ ∈ ΓO | γϖβ→α = ϖβ→α, i.e., γα = α and γβ = β} (2.11)

be the stabilizer subgroup of ϖβ→α in ΓO. We recall the following elementary fact.

Lemma 2.2.1. An element γ ∈ Γϖβ→α
is a hyperbolic element (i.e., an element with

distinct real eigenvalues) if and only if γ ̸= ±1.

Proof. Let γ ∈ Γϖβ→α
. First note that γ is diagonalizable in M2(R) since it has two

distinct fixed points α, β ∈ P1(R). More precisely, let

v =

(
α1

α2

)
, w =

(
β1
β2

)
∈ R2−{0}, (2.12)

be the eigenvectors of γ corresponding to the distinct fixed points α, β respectively, i.e.,
α = [α1 : α2], β = [β1 : β2] in P1(R). Let λ, µ ∈ R be the eigenvalues of γ corresponding
to v, w respectively. Then we have

γ =

(
α1 β1
α2 β2

)(
λ 0
0 µ

)(
α1 β1
α2 β2

)−1

. (2.13)

7



Now, if λ = µ, then λ = µ = ±1 since det γ = 1, and hence γ = ±1. Therefore, we see
that γ has distinct real eigenvalues if and only if γ ̸= ±1.

The following proposition extends Theorem 2.1.1 to the Shimura curve ΓO\h.

Proposition 2.2.2 (The geodesic Lagrange theorem for Shimura curves). Let the no-
tation be as above. Then the following conditions are equivalent.

(i) The projection ϖβ→α becomes a closed geodesic, i.e., ϖβ→α has a compact image
in ΓO\h.

(ii) There exists a hyperbolic element in Γϖβ→α
, i.e., Γϖβ→α

̸= {±1}.

(iii) The two endpoints α and β are of the following form:{
α = 1

2w (z − z̄ ±
√

Dz,w)

β = 1
2w (z − z̄ ∓

√
Dz,w)

(2.14)

for some z, w ∈ L such that Dz,w := (z − z̄)2 + 4aww̄ > 0. Here if w = 0, we
assume (α, β) = (0,∞) or (∞, 0).

Before proving this proposition we introduce some more notations. Suppose that
α, β ∈ R ∪ {∞} can be written in the form

α =
1

2w
(z − z̄ ±

√
Dz,w) (2.15)

β =
1

2w
(z − z̄ ∓

√
Dz,w) (2.16)

for z, w ∈ L such that Dz,w = (z− z̄)2 +4aww̄ > 0. Note that we have Dz,w ∈ F by the

definition. Set θz,w :=

(
z aw̄
w z̄

)
∈ A ⊂ M2(L). Then we define

Kz,w := F [θz,w] ⊂ A (2.17)

to be the F -subalgebra of A generated by θz,w, and set Oz,w := Kz,w ∩O. Note that we
have θz,w /∈ F because Dz,w ̸= 0. We denote by O1

z,w := O×
z,w ∩O1 the group of reduced

norm one units in Oz,w.

Lemma 2.2.3. (1) The subalgebra Kz,w is a maximal (commutative) subfield in A.

(2) The field Kz,w is a quadratic extension of F , and the reduced norm on A restricted
to Kz,w coincides with the field norm of Kz,w/F .

(3) The field Kz,w splits at the place σ1 and ramifies at the places σ2, . . . , σd, i.e., Kz,w⊗F

R ≃ R× R and Kz,w ⊗F Fσi ≃ C for 2 ≤ i ≤ d.

8



(4) Let F (
√

Dz,w) ⊂ R be the quadratic extension of F in R generated by
√
Dz,w. Then

we have the following isomorphism of fields:

ρα : Kz,w
∼→ F (

√
Dz,w);

(
q r
s t

)
7→ sα+ t. (2.18)

(5) We have the following identity:

K×
z,w = {γ ∈ A× ⊂ GL2(L) | γα = α, γβ = β} (2.19)

= {γ ∈ A× ⊂ GL2(L) | γα = α} (2.20)

In particular, the subfield Kz,w ⊂ A depends only on α, and does not depend on the
choice of z, w ∈ L. By taking the intersection with O1 we also obtain O1

z,w = Γϖβ→α
.

(6) The subring Oz,w ⊂ Kz,w is an order in Kz,w. In particular rankZO1
z,w = 1, and

there exists ε0 ∈ O1
z,w such that O1

z,w = {±εk0 | k ∈ Z}.

Proof. (1) This is because we have assumed that A is a division algebra and θz,w /∈ F .
(2) Now since θz,w /∈ F , the characteristic polynomial Pz,w(X) = X2 − tr(θz,w)X +

det(θz,w) = X2 − trd(θz,w)X + nrd(θz,w) ∈ F [X] of θz,w as a matrix in M2(L) becomes
the minimal polynomial of θz,w with respect to the field extension Kz,w/F . Therefore,
Kz,w is a quadratic extension of F , and the reduced norm and the field norm coincide.

(3) We easily see that the discriminant of the characteristic polynomial Pz,w(X) is
tr(θz,w)

2 − 4 det(θz,w) = Dz,w. Therefore the assumption Dz,w > 0 implies that Kz,w/F
splits at σ1. On the other hand, for 2 ≤ i ≤ d, the assumption A ⊗F Fσi = H implies
that Kz,w ⊗F Fσi must be a field of degree 2 over R, and hence isomorphic to C.

(4) The map ρα is an F -linear map which sends 1 to 1, and θz,w to wα + z̄. Now,
since wα+ z̄ = 1

2(z+ z̄±
√
Dz,w) is a root of the characteristic polynomial Pz,w(X), the

map ρα is an isomorphism.
(5) Note that the fixed points of θz,w in P1(C) are α and β, i.e., θz,wα = α and

θz,wβ = β. Let γ ∈ K×
z,w. Then γ commutes with θz,w in Kz,w ⊂ M2(L), and hence

γ and θz,w have the same eigenvectors. Therefore the fixed points of γ are also α and
β, and thus γ belongs to the right hand side of (2.19). Clearly, the right hand side of
(2.19) is a subset of the right hand side of (2.20). Now, let γ ∈ A× such that γα = α.
It suffices to show that γ ∈ Kz,w = F [θz,w]. Suppose γ /∈ F [θz,w]. Then, since F [θz,w] is
a field by (1), the F -subalgebra F [θz,w, γ] ⊂ A becomes an F [θz,w]-algebra of degree at
least 2. Therefore we obtain F [θz,w, γ] = A by (2). By the assumption, θz,w and γ share
the same fixed point α, and hence share the same eigenvector, say v ∈ R2−{0}. Then
it follows that every element of A× ⊂ GL2(R) shares the same eigenvector v, and hence
every element of (A⊗F R)× = GL2(R) shares the same eigenvector v. However, this is
impossible. Thus we see γ ∈ Kz,w.

(6) Since O is a finitely generated OF -module and OF is noetherian, we see that Oz,w

is finitely generated as an OF -module. On the other hand, since O is an order in A, there
exists m ∈ Z>0 such that mθz,w ∈ O ∩Kz,w = Oz,w, thus we see Oz,w ⊗OF

F = Kz,w.
Therefore Oz,w is an order in Kz,w. Now, by (2), we have O1

z,w = ker(NKz,w/F : O×
z,w →
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O×
F ), and coker(NKz,w/F ) is a torsion group. Thus we get rankZO1

z,w = 1 by (3) and
Dirichlet’s unit theorem.

We denote by RO,z,w (resp. UO,z,w/F ) the image of Oz,w (resp. O1
z,w) under the

isomorphism ρα, i.e.,

RO,z,w := ρα(Oz,w) ⊂ F (
√

Dz,w), (2.21)

UO,z,w/F := ρα(O1
z,w) = ker(N

F (
√

Dz,w)/F
: R×

O,z,w → O×
F ). (2.22)

Proof of Proposition 2.2.2. To see the equivalence (i) ⇔ (ii), let us first suppose that
ϖβ→α becomes a closed geodesic. Then there exists a geodesic segment I ⊂ ϖβ→α

which surjects onto ϖβ→α. Take any point P ∈ ϖβ→α such that P ̸∈ I. Then by
definition of I, there exist a geodesic segment J ⊂ ϖβ→α and γ ∈ ΓO−{±1} such that
P ∈ J and γJ ⊂ I. Since I and J are both geodesic segments of ϖβ→α, it follows that
γϖβ→α = ϖβ→α, and hence we find a hyperbolic element γ ∈ Γϖβ→α

. On the other
hand, if γ ∈ Γϖβ→α

, γ ̸= ±1, then for any P ∈ ϖβ→α, the geodesic segment from P to
γP becomes a fundamental domain for ϖβ→α, and hence ϖβ→α is a closed geodesic. To
see the implication (ii) ⇒ (iii), let γ ∈ Γϖβ→α

be a hyperbolic element. Then γ can be

written as γ = θz,w =

(
z aw̄
w z̄

)
for some z, w ∈ L with Dz,w > 0 by (2.8), and we easily

see that the two fixed points α, β of γ can be written as (2.14). It remains to prove
(iii) ⇒ (ii). Suppose α and β are written as (2.14). By Lemma 2.2.3 (6), there exists
a non-torsion unit ε ∈ O1

z,w. Then, by Lemma 2.2.3 (5), we see ε ∈ Γϖβ→α
. Finally,

because ε ̸= ±1, it is a hyperbolic element by Lemma 2.2.1.

2.3 The Shimura curve coming from the (2, 3, 7)-triangle group

Here we recall some basic facts about the case where ΓO becomes the (2, 3, 7)-triangle
group. Let η := 2 cos

(
2π
7

)
∈ R be the unique positive root of X3 +X2 − 2X − 1, and

let F := Q(η) ⊂ R be the totally real cubic field generated by η over Q. Then we have

OF = Z[η]. We consider the quaternion algebra A :=
(η, η

F

)
= F + Fi+ Fj + Fk with

i2 = j2 = η and ij = −ji = k. By taking a splitting field L := F (
√
η) ⊂ R we embed A

into M2(L) ⊂ M2(R) as in Section 2.2:

ι : A
∼→
{(

z ηw̄
w z̄

)∣∣∣∣ z, w ∈ L

}
⊂ M2(L);


i 7→

(
0 η

1 0

)

j 7→
(√

η 0

0 −√
η

) (2.23)

In the following we regard A as a subalgebra of M2(L) ⊂ M2(R) via (2.23). Since η
is the unique positive root of X3 +X2 − 2X − 1, we see that A satisfies the condition
A⊗QR ≃ M2(R)×H2. There is a maximal order O ⊂ A called the Hurwitz order which
is generated (as an OF -algebra) by i, j and j′ := 1

2(1 + ηi+ (1 + η + η2)j), i.e.,

O := Z[η][i, j, j′] ⊂ A. (2.24)
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Then it is known that ΓO = O1 ⊂ SL2(R) becomes the (2, 3, 7)-triangle group. (Strictly
speaking, the image of ΓO in PSL2(R) = Aut(h) is the (2, 3, 7)-triangle group.) More
precisely, let

g2 := ij/η, (2.25)

g3 :=
1

2
(1 + (η2 − 2)j + (3− η2)ij), (2.26)

g7 :=
1

2
(η2 + η − 1 + (2− η2)i+ (η2 + η − 2)ij). (2.27)

Then it is known that g2, g3, g7 are the generator of O1 with the relations g22 = g33 =
g77 = −1 and g2 = g7g3. See Elkies [5], [6], and Katz-Schaps-Vishne [11]. Therefore we
put ∆(2, 3, 7) := ΓO = O1.

More explicitly, as matrices in SL2(R), g2, g3, g7 are of the following form:

g2 =

(
0 −√

η
1/
√
η 0

)
, (2.28)

g3 =
1

2

(
1 + (η2 − 2)

√
η −(η2 + η − 1)

√
η

(3− η2)
√
η 1− (η2 − 2)

√
η

)
, (2.29)

g7 =
1

2

(
η2 + η − 1 η2 − 1−√

η
2− η2 + (η2 + η − 2)

√
η η2 + η − 1

)
. (2.30)

See also Remark 3.1.1 for the action of g2, g3, g7 on the upper-half plane h.
In the next section we study the geodesics on the Shimura curve ∆(2, 3, 7)\h using

the geodesic continued fraction.

3 Geodesic continued fraction for ∆(2, 3, 7)\h
Now, we have seen in Proposition 2.2.2 that the geodesicsϖ on h joining special algebraic
numbers become periodic on the Shimura curve ΓO\h. The geodesic continued fraction
is an algorithm to observe the behavior of a given geodesic ϖ on h with respect to the
action of ΓO and enables us to detect the periodicity of ϖ.

In the following we focus on the case where ΓO = ∆(2, 3, 7). Let the notations be
the same as in Section 2.3.

3.1 Notation

For z, w ∈ h such that z ̸= w, we denote by (z, w) ⊂ h the open geodesic segment
joining z and w, and define by [z, w) := (z, w) ∪ {z}, (z, w] := (z, w) ∪ {w}, [z, w] :=
(z, w)∪{z, w} ⊂ h the half open and closed geodesic segments. In the case where z = w,
we assume that (z, z) = [z, z) = (z, z] = ∅ and [z, z] = {z}. We also denote by −→zw the
oriented closed geodesic segment joining z to w, i.e., the geodesic segment [z, w] with
orientation from z to w. In the case where z = w, we assume −→zz has the unique trivial
orientation: z to z.

11



For an oriented geodesic ϖ on h and points P,Q ∈ ϖ, we introduce the natural order
≤ϖ, <ϖ by {

P ≤ϖ Q if ϖ ∩ [P,Q] =
−−→
PQ,

P <ϖ Q if ϖ ∩ [P,Q] =
−−→
PQ and P ̸= Q.

(3.1)

Fundamental domain Let τ2, τ3, τ7 ∈ h be the fixed points of the elliptic elements
g2, g3, g7 ∈ ∆(2, 3, 7) respectively. We also put τ ′3 := g2τ3 = g7τ3 ∈ h. Then the (closed)
triangle F ⊂ h whose vertices are τ3, τ

′
3, τ7 and whose edges are geodesic segments

[τ3, τ
′
3], [τ3, τ7], [τ

′
3, τ7], is known to be a fundamental domain for ∆(2, 3, 7). See [8, pp.99–

101]
Furthermore we define D :=

⋃6
i=0 g

i
7F to be the regular geodesic heptagon with the

center τ7. We denote by e0 := [τ3, τ
′
3), e

′
0 := (τ3, τ

′
3] the uppermost half open edges of

D, and define ei := gi7e0, e
′
i := gi7e

′
0 for i ∈ Z/7Z. (Note that g77 = −1 acts trivially on

h.) We denote by F◦ (resp. D◦) the interior of F (resp. D).
We define c0 := ϖ−√

η→√
η to be the oriented geodesic joining −√

η to
√
η. By the

explicit computation using (2.28), (2.29), (2.30), we see that c0 is exactly the geodesic
containing the edge e0. We denote by S0 := {w ∈ C | |w| ≤ √

η, Im(w) ≥ 0} ⊂ h the
closed semicircle “inside” c0. Here |w| is the usual Euclidean absolute value on C. See
Figure 1.

h

τ2
τ

2

τ3
′

3

τ7
F

τ7
F

F
D

D
e0
e

e1
e

e2
ee3

e

3

e4

e5
e

e6

6

0−√
η

√
η√

τ ′3 = g7τ3

g3τ7

g−1
7 τ3

c0

Figure 1: Fundamental domain

Remark 3.1.1. In Figure 1, g2 acts on h as a rotation by −π around τ2 (with respect
to the hyperbolic metric on h), g3 acts as a rotation by −2π

3 around τ3, and g7 acts as a
rotation by −2π

7 around τ7. These facts can be verified by using (2.28), (2.29), (2.30).
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3.2 Geodesic continued fraction algorithm

Let ϖ = ϖβ→α be an oriented geodesic on h joining β to α (α, β ∈ R ∪ {∞}, α ̸= β).

Note that if ϖ ∩ D ≠ ∅, then there exist P,Q ∈ ϖ such that ϖ ∩ D =
−−→
PQ (possibly

P = Q) because D is geodesically convex.

Definition 3.2.1. (1) We say that ϖ enters (resp. leaves) D from ei (resp. e′i) if

ϖ ∩ D =
−−→
PQ for P,Q ∈ h with P ∈ ei (resp. Q ∈ e′i).

(2) We say that ϖ is reduced if ϖ enters D from e0 and |α| < √
η.

Remark 3.2.2. 1. The reduced oriented geodesics can be classified into three types
according to the way they intersect with D. See Figure 2 and Lemma 3.2.3.

2. The above definition of the reducedness of geodesics is an analogue of the reducedness
of real quadratic irrationals or quadratic forms in the classical theory of continued
fraction. See Remark 3.2.7.

̟ ̟

h

2

τ3
′

F
D

6

0

g−1
7 τ3

̟

h

2

τ3
′

F
D

6

0

g−1
7 τ3

h

2

τ3
′

F
D

6

0

g−1
7 τ3

Figure 2: 3 types of reduced geodesics

Lemma 3.2.3. Let ϖ = ϖβ→α be an oriented geodesic on h which enters D from e0
and leaves D from e′i (i ∈ Z/7Z). Then we have the following:

(1) If ϖ ∩ D◦ ̸= ∅, then we have i ̸= 0, and both ϖ and (gi7g2)
−1ϖ are reduced.

(2) If ϖ ∩ D =
−−−−−−→
τ3(g

−1
7 τ3), then we have i = 5 and ϖ = g3c0. In particular, we see that

both ϖ and (g57g2)
−1ϖ are reduced, and that (g57g2)

−1ϖ ∩ D◦ ̸= ∅.

(3) If ϖ ∩ D =
−−−−−→
τ3(g7τ3), then we have i = 0 and ϖ = c0. In particular, we see that ϖ

is not reduced and g3ϖ is reduced.
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(4) If ϖ ∩ D = {τ3}, then we have i = 6, and (g67g2)
−1ϖ ∩ D◦ = g−1

3 ϖ ∩ D◦ ̸= ∅.
Moreover, in this case, ϖ is reduced if and only if (g67g2)

−1ϖ is reduced.

As a result, for any reduced oriented geodesic ϖ, we see that there exists a unique index
i ∈ Z/7Z, i ̸= 0 such that ϖ leaves D from e′i. Moreover, for such i, (gi7g2)

−1ϖ is again
reduced.

Proof. Suppose ϖ ∩ D =
−−→
PQ wth P ∈ e0 and Q ∈ e′i.

(1) First, if i = 0, then we must have P = τ3, Q = g7τ3, and hence ϖ ∩ D◦ = ∅,
which is a contradiction. Therefore, i ̸= 0. Take z ∈ ϖ ∩ D◦ ⊂ S0. We have P ∈ c0,
z /∈ c0, and z ∈ (P,Q) ⊂ (P, α). If |α| ≥ √

η, then we have either (P, α) ⊂ c0
or (P, α) ⊂ h − S0, which is a contradiction. Therefore, ϖ is reduced. Next, set
ϖ′ := (gi7g2)

−1ϖ, P ′ := (gi7g2)
−1P , and Q′ := (gi7g2)

−1Q. Then we see that Q′ ∈ ϖ′∩e0,
(P ′, Q′) ⊂ h − S0. These imply that ϖ′ enters D from e0 and |(gi7g2)−1α| < √

η, and
hence ϖ′ is reduced.

The assertions (2), (3) and the first half of (4) are clear. To see the latter half of
(4), observe that (under the assumption ϖ ∩ D = {τ3}) ϖ is reduced if and only if
−√

η < α < g3
√
η, where g3

√
η is the linear fractional transformation of

√
η by g3. Then

we further see that this is equivalent to (g67g2)
−1ϖ being reduced.

The last assertion follows directly from (1) to (4).

Lemma 3.2.4. (1) For any oriented geodesic ϖ and z ∈ ϖ, there exists γ ∈ ∆(2, 3, 7)
such that γϖ is reduced and γz ∈ D.

(2) For any oriented geodesic ϖ, there exists γ ∈ ∆(2, 3, 7) such that γϖ is reduced and
γϖ ∩ D◦ ̸= ∅.

(3) Let ϖ be a reduced oriented geodesic such that ϖ ∩ D◦ ̸= ∅ and let z ∈ ϖ ∩ D◦.
Suppose γϖ is reduced and γz ∈ D for γ ∈ ∆(2, 3, 7). Then we have γ = ±1.

Proof. (1) Since F ⊂ D, where F is the fundamental domain, there exists γ′ ∈ ∆(2, 3, 7)

such that γ′z ∈ γ′ϖ∩D =
−−→
PQ for some P,Q ∈ h. Suppose P ∈ ei, and set ϖ′ := g−i

7 γ′ϖ,

z′ := g−i
7 γ′z ∈ D. Then enters D from e0. If ϖ′ ∩ D◦ ̸= ∅ or ϖ′ ∩ D =

−−−−−−→
τ3(g

−1
7 τ3), then

by Lemma 3.2.3 (1), (2), ϖ′ is reduced as desired. If ϖ′ ∩D =
−−−−−→
τ3(g7τ3), then by Lemma

3.2.3 (3), we have ϖ′ = c0, and hence we see that g3ϖ
′ is reduced and g3z

′ ∈ D.
Otherwise, we have ϖ′ ∩D = {τ3} and z′ = τ3. In this case we easily see that either ϖ′

is reduced or g3ϖ
′ is reduced and g3z

′ ∈ D.
(2) This follows from (1) and Lemma 3.2.3. Indeed, by (1), we can find γ ∈ ∆(2, 3, 7)

such that γϖ is reduced. Then by replacing γ by (g57g2)
−1γ or (g67g2)

−1γ if necessary,
we further obtain γϖ ∩ D◦ ̸= ∅.

(3) Suppose ϖ ∩ D =
−−→
PQ and γz ∈ gi7F (i ∈ Z/7Z). Then since z ∈ γ−1gi7F ∩ D◦,

there exists j ∈ Z/7Z such that γ = ±gj7. In particular, we see that γϖ∩D = γϖ∩γD =−−−−→
γPγQ. On the other hand, since ϖ and γϖ are both reduced, we have P ∈ e0 and
γP ∈ e0. Therefore, we see that j = 0, and hence γ = ±1.
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Now we define the geodesic continued fraction algorithm following the general prin-
ciple of Morse [13], Series [15], Katok [9]. Note that we slightly modify the original
algorithm by using D instead of F .

Definition 3.2.5 (Geodesic continued fraction algorithm for ∆(2, 3, 7)\h). Let ϖ be an
oriented geodesic on h. Define B0 ∈ ∆(2, 3, 7) and ik ∈ Z/7Z−{0} (k = 1, 2, 3, . . . ) by
the following algorithm:

• Find (any) B0 ∈ ∆(2, 3, 7) such that B−1
0 ϖ is reduced, and set ϖ0 := B−1

0 ϖ.

• For a given reduced oriented geodesic ϖk (k ≥ 0), find the unique ik+1 ∈ Z/7Z−{0}
such that ϖk leaves D from e′ik+1

. Set ϖk+1 := (g
ik+1

7 g2)
−1ϖk. Then by Lemma

3.2.3, ϖk+1 is again reduced.

We call this the geodesic continued fraction expansion of ϖ (with respect to ∆(2, 3, 7)),
and express it as

ϖ = JB0; i1, i2, i3, · · ·K∆(2,3,7) or B
−1
0 ϖ = Ji1, i2, i3, · · ·K∆(2,3,7). (3.2)

We review some basic properties of geodesic continued fraction expansion. See also
Figure 4.

Proposition 3.2.6. Let ϖ be an oriented geodesic on h, and let

ϖ = JB0; i1, i2, i3, · · ·K∆(2,3,7) (3.3)

be the geodesic continued fraction expansion of ϖ.

(1) The choice of B0 is not unique. However once we choose B0, then the sequence
i1, i2, . . . are uniquely determined. More generally, let ϖ′ be another oriented geodesic
(possibly ϖ′ = ϖ), and let

ϖ′ = JB′
0; j1, j2, j3, · · ·K∆(2,3,7), (3.4)

be the geodesic continued fraction expansion of ϖ′ such that (B′
0)

−1ϖ′ = B−1
0 ϖ,

then we have jk = ik for all k ≥ 1.

(2) For k ≥ 1, set Ak := gik7 g2 ∈ ∆(2, 3, 7) and Bk := B0A1A2 · · ·Ak ∈ ∆(2, 3, 7) so that

ϖk = B−1
k ϖ in the algorithm. Moreover define Pk, Qk ∈ ϖ so that ϖ∩BkD =

−−−→
PkQk.

Then we have:

(i) Pk ∈ Bke0, and Qk = Pk+1 ∈ Bke
′
ik+1

. In particular, we have Pk ≤ϖ Pk+1.

(ii) Pk ̸= Qk+1 = Pk+2. In particular, we have Pk <ϖ Pk+2.

(iii) BkD ≠ BlD for k ̸= l.
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Proof. (1) and (2) (i) are clear from Lemma 3.2.3, and Definition 3.2.5.
(2) (ii) Note that by (i) we have Pk ≤ϖ Qk = Pk+1 ≤ϖ Qk+1 in general. Suppose

Pk = Qk+1. Then we have Pk = Qk = Pk+1 = Qk+1, and hence Pk = Qk = Bkτ3 and
Pk+1 = Qk+1 = Bk+1τ3. Therefore, it follows that Ak+1 = g−1

7 g2 = g3. Thus we get
B−1

k ϖ ∩ D = g−1
3 B−1

k ϖ ∩ D = {τ3}, which is impossible by Lemma 3.2.3 (4).
(2) (iii) Suppose BkD = BlD for k ≤ l. Since D is geodesically convex, we have

Pk = Pl and Qk = Ql. Therefore, by (i) we obtain Pk = Pm = Qm = Ql for all
k ≤ m ≤ l. Then by (ii), we have k = l.

Suppose that ϖ joins β to α (α, β ∈ R∪{∞}, α ̸= β), i.e., ϖ = ϖβ→α. Suppose also
that ϖ is reduced for simplicity, and hence we take B0 = 1 in the algorithm. Let

ϖ = ϖβ→α = Ji1, i2, i3, . . .K∆(2,3,7) (3.5)

be the geodesic continued fraction expansion ofϖ. For k ≥ 1, set Ak := gik7 g2 ∈ ∆(2, 3, 7)
and Bk := A1A2 · · ·Ak ∈ ∆(2, 3, 7) as in Proposition 3.2.6. Then by the definition of
the algorithm, the sequence BkD (k = 1, 2, 3, . . . ) (of subsets of h) seems to “approach”
to α as k goes to ∞. See Figure 4. In fact we can prove

α = lim
k→∞

Bkτ7. (3.6)

See Theorem 3.3.2.

Now, note that for γ =

(
a b
c d

)
∈ SL2(R) such that c ̸= 0, we can rewrite the linear

fractional transformation γz (z ∈ P1(C)) as

γz =
az + b

cz + d
=

a

c
− 1/c2

d/c+ z
. (3.7)

Therefore for i ∈ Z/7Z−{0} we can define ai, bi, ci ∈ L = Q(
√
η) by

gi7g2z =: ai −
bi

ci + z
(3.8)

because gi7g2 does not fix ∞ and hence its lower left component is non-zero. More
explicitly, ai, bi, ci can be computed as follows: Put θ =

√
η for simplicity. Then we

have 
a1 = −a−1 = θ − θ2 + θ4 − θ5 = −η + η2 + (1− η2)

√
η

b1 = b−1 = 4 + 8θ2 − 8θ4 = 4(1 + 2η − 2η2)

c1 = −c−1 = θ + θ2 − θ4 − θ5 = η − η2 + (1− η2)
√
η

(3.9)


a2 = −a−2 = −2− 3θ + θ2 + θ4 + θ5 = −2 + η + η2 + (−3 + η2)

√
η

b2 = b−2 = −8 + 4θ2 + 4θ4 = 4(−2 + η + η2)

c2 = −c−2 = 2− 3θ − θ2 − θ4 + θ5 = 2− η − η2 + (−3 + η2)
√
η

(3.10)
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
a3 = −a−3 = −θ + θ2 − 2θ3 + θ4 − θ5 = η + η2 − (1 + 2η + η2)

√
η

b3 = b−3 = 4 + 12θ2 + 4θ4 = 4(1 + 3η + η2)

c3 = −c−3 = −θ − θ2 − 2θ3 − θ4 − θ5 = −η − η2 − (1 + 2η + η2)
√
η.

(3.11)

We can also easily check the following properties of these constants. For j ∈ Z/7Z−{0},

aj = gj7 0 = (gj7g2)∞ ∈ OL, (3.12)

−cj = aj = (gj7g2)
−1∞ ∈ OL, (3.13)

bj/4 =
η(

2 cos
(
jπ
7

))2 =
2 cos

(
2π
7

)(
2 cos

(
jπ
7

))2 ∈ O×
F , (3.14)

|a1| = |a−1| < |a2| = |a−2| <
√
η < |a3| = |a−3|. (3.15)

Then we can formally rewrite (3.6) as

α = ai1 −
bi1

ci1 + ai2 −
bi2

ci2 + ai3 −
bi3

ci3 + ai4 −
bi4

ci4 + · · ·

(3.16)

In the following section we study the convergence of this continued fraction expansion
of α.

Remark 3.2.7 (Remark on the case of SL2(Z)). Here we briefly explain the background
of the above definitions of reducedness of a geodesic ϖ and the geodesic continued
fraction by comparing to the case of SL2(Z). Notations in this remark are independent
of the rest of the paper.

As we have seen in Section 2.1, the modular curve SL2(Z)\h is the Shimura curve
associated to the quaternion algebra M2(Q) over Q and a maximal order M2(Z). Now,
SL2(Z) is the (2, 3,∞)-triangle group ∆(2, 3,∞) generated by

g2 =

(
0 −1
1 0

)
, g3 =

(
−1 −1
1 0

)
, g∞ =

(
1 1
0 1

)
. (3.17)

The triangle F =
{
z ∈ h | |z| ≥ 1,−1

2 ≤ Re(z) ≤ 1
2

}
is known to be a fundamental do-

main. Our regular geodesic heptagon corresponds to the ∞-gon D =
⋃

i∈Z g
i
∞F , and

our ei, e
′
i correspond to

ei =

{
z ∈ h

∣∣∣∣ |z| = 1, i− 1

2
< Re(z) ≤ i+

1

2

}
(3.18)

e′i =

{
z ∈ h

∣∣∣∣ |z| = 1, i− 1

2
≤ Re(z) < i+

1

2

}
, (3.19)
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Figure 3: The case of SL2(Z)

respectively. See Figure 3.
Let ϖ = ϖβ→α be the oriented geodesic on h joining β to α (α, β ∈ R). Then our

definition of the reduced geodesics (Definition 3.2.1) in this case would be the following:
ϖ is said to be reduced if ϖ enters D from e0 and |α| > 1. Then this condition can be
seen roughly as:

|β|“ < ”1 and |α| > 1. (3.20)

Hence we see that this definition is an analogue of the reducedness of real quadratic
irrationals (cf. [21]): a real quadratic irrational α is said to be reduced if α and its
conjugate α′ (over Q) satisfy

0 < α′ < 1 and α > 1. (3.21)

We also see that our geodesic continued fraction expansion of ϖ in this case of SL2(Z)
coincides with the one called the “geometric code” and studied in [9] by Katok. Further-
more since we have gi∞g2z = i− 1

z , (3.16) becomes a variant of the so called “−”-continued
fraction expansion.

3.3 Convergence

Perhaps the most traditional way to discuss the convergence of the above continued
fraction (3.16) is to consider the limit of the following k-th convergent:

xtrad
k = ai1 −

bi1

ci1 + ai2 −
bi2

ci2 + · · · − bik
cik + aik+1

(3.22)
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= Bkaik+1
= Bk+1∞, (3.23)

Here Bkaik+1
and Bk+1∞ are the linear fractional transformations of aik+1

and ∞.
Unfortunately, however, we can give an example in which the traditional k-th convergent
xtrad
k does not converge to α. See Example 3.5.1.
Instead, we consider the following “regularized” k-th convergent:

xreg
k = Bk0 = ai1 −

bi1

ci1 + ai2 −
bi2

ci2 + · · · − bik
cik

, (3.24)

which seems more natural in our setting since this xreg
k corresponds to exactly the first

k steps of the geodesic continued fraction expansion of ϖ.

Definition 3.3.1. Let i = (ik)k≥1 (ik ∈ Z/7Z−{0}) be a sequence.

(1) We define the associated formal continued fraction x(i) by the right hand side of
(3.16)

(2) We define the associated traditional k-th convergent xtrad
k (i) by the right hand side of

(3.22). If the traditional k-th convergent xtrad
k (i) converges to x ∈ P1(C) = C∪{∞}

with respect to the natural topology of P1(C), we say that the continued fraction
x(i) converges to x in the traditional sense.

(3) We define the associated regularized k-th convergent xreg
k (i) by the right hand side of

(3.24). If the regularized k-th convergent xreg
k (i) converges to x ∈ P1(C) = C∪{∞}

with respect to the natural topology of P1(C), we say that the continued fraction
x(i) converges to x in the regularized sense.

Recall that S0 = {w ∈ C | |w| ≤ √
η, Im(w) ≥ 0} ⊂ h is the closed semicircle inside

the geodesic c0. We prove the following.

Theorem 3.3.2. Let ϖ = ϖβ→α be an oriented geodesic on h joining β to α, and let

B−1
0 ϖ = Ji1, i2, i3, · · ·K∆(2,3,7) (3.25)

be the geodesic continued fraction expansion of ϖ. For k ≥ 1, set Ak := gik7 g2 ∈ ∆(2, 3, 7)
and Bk := B0A1A2 · · ·Ak ∈ ∆(2, 3, 7). We denote by BkS0 ⊂ h the Bk-translation of
S0. Then for any sequence (zk)k≥0 such that zk ∈ BkSk, we have

lim
k→∞

zk = α (3.26)

with respect to the natural topology of P1(C). In particular, for any z ∈ S0 we obtain

lim
k→∞

Bkz = α. (3.27)
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Corollary 3.3.3. The associated formal continued fraction x((i1, i2, . . . )) converges to
B−1

0 α in the regularized sense, i.e.,

lim
k→∞

xreg
k ((i1, i2, . . . )) = B−1

0 α (3.28)

Proof. This follows from 0 ∈ S0 and Bk0 = B0A1 · · ·Ak0 = B0x
reg
k ((i1, i2, . . . )).

By the explicit computation of ai, bi, ci, we have |a1| = |a−1| < |a2| = |a−2| < √
η <

|a3| = |a−3|, cf. (3.15). From this and Theorem 3.3.2, we can also say a little bit about
the convergence in the traditional sense.

Corollary 3.3.4. We keep the notations in Theorem 3.3.2

(1) Let (kl)l≥1 be the subsequence of (k)k∈Z≥1
consisting of those k ≥ 1 such that ik ̸= 3, 4

in Z/7Z. Then we have

lim
l→∞

xtrad
kl

((i1, i2, . . . )) = B−1
0 α. (3.29)

(2) In particular, if ik ̸= 3, 4 in Z/7Z for all sufficiently large k ≥ 1, then the associated
formal continued fraction x(i) converges to B−1

0 α in the traditional sense.

Proof of the convergence Here we give a proof of Theorem 3.3.2.
Put Γ := ∆(2, 3, 7) for simplicity. We may assume that ϖ = ϖβ→α is reduced and

B0 = 1. Recall that c0 = ϖ−√
η→√

η is the oriented geodesic on h which contains the
edge e0. We denote by u0 :=

√
η, v0 := −√

η the two endpoints of c0. For k ≥ 0 we
define ck := Bkc0, uk := Bku0, vk := Bkv0, Sk := BkS0 to be the Bk-translations of the
corresponding objects. By the definition of the geodesic continued fraction algorithm,

B−1
k ϖ is reduced. Thus we define Pk, Qk ∈ ϖ (k ≥ 0) so that ϖ ∩ BkD =

−−−→
PkQk. Then

by Proposition 3.2.6 (2) (i), we have Pk ∈ ϖ∩ ck and Qk = Pk+1 ∈ ϖ∩ ck+1. See Figure
4.

In the following we prepare six technical lemmas, most of which are intuitively clear.
We adopt the usual notation of intervals in P1(R) = R ∪ {∞} by defining

(u, v) =


(u, v) if u, v ∈ R and u < v

(u,∞) ∪ {∞} ∪ (−∞, v) if v, u ∈ R and v < u

(u,∞) if u ∈ R, v = ∞
(−∞, v) if v ∈ R, u = ∞,

(3.30)

for u, v ∈ R ∪ {∞} such that u ̸= v.

Lemma 3.3.5. For all k ≥ 0 we have α ∈ (vk, uk) and β ∈ (uk, vk).

Proof. By the definition of the geodesic continued fraction algorithm, B−1
k ϖ is reduced,

and hence we see B−1
k α ∈ (v0, u0) and B−1

k β ∈ (u0, v0). Now the lemma follows from
the fact that SL2(R) action preserves the intervals in R ∪ {∞}, i.e., g(u, v) = (gu, gv)
for g ∈ SL2(R) and u, v ∈ R ∪ {∞} such that u ̸= v.
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α ukvk
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Figure 4: Geodesic continued fraction algorithm of ϖ

Next we observe the behavior of ck as k goes to ∞, or more generally, the behavior
of Γ-translations of c0.

Lemma 3.3.6. (1) The projection c0 becomes a closed geodesic on Γ\h, and there exists
a hyperbolic element γ0 ∈ Γ such that Γc0(= {γ ∈ Γ | γc0 = c0}) = {±γk0 | k ∈ Z}.

(2) In particular, we can decompose c0 into a disjoint union of segments as

c0 =
∐
k∈Z

γk0 [τ3, γ0τ3). (3.31)

Proof. (1) follows from Proposition 2.2.2 and Lemma 2.2.3 (5), (6). Indeed by choosing
z = w = 1, we obtain Dz,w = (z − z̄)2 + 4ηww̄ = 4η and ±√

η = 1
2w ((z − z̄)±

√
Dz,w).

(2) follows from (1) and τ3 ∈ c0.

We consider the set

I := {γc0 | γ ∈ Γ,#(γc0 ∩ c0) = 1} (3.32)

of all Γ-translations of c0 which intersect with c0 at one point in h. Note that if two
geodesics on h has an intersection, then either they intersect at one point or they coincide
up to the orientation.
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Lemma 3.3.7. There exist c(1), . . . , c(r) ∈ I (for some r ≥ 0) such that

I =
⋃
k∈Z

{γk0 c(1), . . . , γk0 c(r)}. (3.33)

If I = ∅, then we assume r = 0 and the both sides are the empty set.

Proof. First, since Γ = ∆(2, 3, 7) acts properly discontinuously on h, we have

#{γ ∈ Γ | #(γ[τ3, γ0τ3] ∩ [τ3, γ0τ3]) = 1} < ∞ (3.34)

Put {γ(1), . . . γ(r)} := {γ ∈ Γ | #(γ[τ3, γ0τ3] ∩ [τ3, γ0τ3]) = 1}, and set c(i) := γ(i)c0 ∈ I
(i = 1, . . . , r). Now, take any γc0 ∈ I. By Lemma 3.3.6 (2) there exists k, l ∈ Z such
that

#(γγl0[τ3, γ0τ3) ∩ γk0 [τ3, γ0τ3)) = 1. (3.35)

Then we get γ = γk0γ
(i)γ−l

0 for some i ∈ {1, . . . r}, and hence γc0 = γk0 c
(i).

For i = 1, . . . , r, we denote by u(i), v(i) ∈ R ∪ {∞} the two end points of c(i) such
that c(i) = ϖv(i)→u(i) .

Lemma 3.3.8. For any ϵ > 0 there exists N > 0 such that for any k ∈ Z, i ∈ {1, . . . , r}
and z ∈ γk0 c

(i) with |k| > N , we have either |z − u0| < ϵ or |z − v0| < ϵ.

Proof. Now γ0 is a hyperbolic element with fixed points u0 and v0. We may assume u0
is the attracting point. On the other hand, we have u(i), v(i) /∈ {u0, v0} because #(c(i) ∩
c0) = 1. Therefore we get limk→∞ γk0u

(i) = limk→∞ γk0v
(i) = u0 and limk→−∞ γk0u

(i) =
limk→−∞ γk0v

(i) = v0. This proves the lemma.

Lemma 3.3.9. (1) For k ̸= l we have ck ̸= cl as subsets of h.

(2) For any fixed l ≥ 0, we have Pk ∈ Sl for all k ≥ l.

(3) For any fixed k ≥ 0, we have Pk /∈ Sl for all l ≥ k + 2.

Proof. (1) Suppose ck = cl for k ≤ l. Then we have Pk = Pl, and hence l ≤ k + 2 by
Proposition 3.2.6 (2) (ii). On the other hand, by the definition of the algorithm, we
easily see that ck+1 ̸= ck. Therefore, we obtain k = l.

(2), (3) These follow from Lemma 3.3.5 and Proposition 3.2.6 (2) (i), (ii). Indeed,
since Sl is geodeiscally convex and ϖ ∩ cl = {Pl}, we have [Pl, α) = ϖ ∩ Sl by Lemma
3.3.5. On the other hand we have Pk ∈ [Pl, α) for k ≥ l, and Pk /∈ [Pl, α) for l ≥ k + 2
by Proposition 3.2.6 (2) (i) and (ii) respectively. This proves the lemma.

Lemma 3.3.10. For any fixed l ≥ 0 we have

#{k ≥ 0 | ck ∩ cl ̸= ∅} < ∞. (3.36)
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Proof. Suppose the contrary, i.e., there exists a subsequence (kn)n≥1 of (k)k∈Z≥0
such

that ckn ∩ cl ̸= ∅ for all n ≥ 1. We may assume kn > l for all n ≥ 1. Then we see
#(ckn ∩ cl) = 1 by Lemma 3.3.9 (1). Therefore we have B−1

l Bknc0 ∈ I for all n ≥ 1. By
Lemma 3.3.7, for each n, the geodesic B−1

l Bknc0 can be written as B−1
l Bknc0 = γmn

0 c(in)

for some mn ∈ Z and in ∈ {1, . . . , r}. Moreover, since B−1
l Bknc0 (n ≥ 1) are distinct by

Lemma 3.3.9 (1), we see |mn| → ∞ as n goes to ∞.
On the other hand, we have B−1

l Pkn ∈ B−1
l Bknc0 ∩ B−1

l ϖ for all n ≥ 1. Therefore,
by Lemma 3.3.8 and Lemma 3.3.9 (2), we obtain

B−1
l α = lim

n→∞
B−1

l Pkn ∈ {u0, v0}. (3.37)

However this contradicts to Lemma 3.3.5.

Proof of Theorem 3.3.2. By Lemma 3.3.10, there exists l0 ≥ 2 such that for all k ≥ l0
we have ck ∩ c0 = ∅. Then for k ≥ l0 ≥ 2, we have either S0 ⊂ Sk or Sk ⊂ S0. However,
by Lemma 3.3.9 (3) we have P0 /∈ Sk, and hence S0 ⊂ Sk can not happen, and we get
Sk ⊊ S0 for all k ≥ l0. Then, inductively, we can find a strictly increasing sequence
(ln)n≥0 such that we have Sk ⊊ Sln−1 for all k ≥ ln. Indeed, for given ln−1, there exists
ln ≥ ln−1 + 2 such that ck ∩ cln−1 = ∅ for all k ≥ ln by Lemma 3.3.10. Then we have
Sk ⊊ Sln−1 for all k ≥ ln ≥ ln−1 +2 by Lemma 3.3.9 (3). In order to prove the theorem,
it suffices to show ⋂

n≥0

Sln = {α}. (3.38)

We denote by S∞ the left hand side of (3.38). Since Sk are all closed semicircle, the
intersection S∞ is also a closed semicircle, i.e., there exists ξ ∈ R(∩S0) and λ ≥ 0 such
that S∞ = {w ∈ C | |w− ξ| ≤ λ, Im(w) ≥ 0}. Suppose λ > 0. Then ξ +

√
−1λ ∈ ∂S∞ is

in h. Since F is a fundamental domain, {γ ∈ Γ | ξ +
√
−1λ ∈ γF} is a non-empty finite

set. Thus we set {δ1, . . . , δm} := {γ ∈ Γ | ξ +
√
−1λ ∈ γF}, V :=

⋃m
j=1 δjF , and put

U := V ◦, where V ◦ is the interior of V . Then U is an open neighborhood of ξ +
√
−1λ,

and thus there exists N > 0 such that U intersects with cln for all n ≥ N . Therefore,
there exists j ∈ {1, . . . ,m} such that δjF intersects with cln = Blnc0 for infinitely many
n ≥ N . Now suppose δjF intersects with cln = Blnc0. Then by Lemma 3.3.6 (2), there
exists kn ∈ Z such that γ−kn

0 B−1
ln

δjF intersects with [τ3, γ0τ3). Since Γ acts properly

discontinuously on h, there exist n1 > n2 ≥ N such that γ
−kn1
0 B−1

ln1
δjF = γ

−kn2
0 B−1

ln2
δjF .

Thus Bn1 = ±Bn2γ
kn2−kn1
0 , and hence cn1 = cn2 , which is a contradiction because ck are

distinct by Lemma 3.3.9 (1). Therefore λ = 0 and we obtain (3.38) by Lemma 3.3.5.

3.4 Periodicity

Now we prove the Lagrange type periodicity theorem. We first prove the periodicity
coming from the closed geodesics on ∆(2, 3, 7)\h, and then prove a refined “β-free”
version by using the convergence of the geodesic continued fraction. As we have remarked
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in Section 1, the following Theorem 3.4.1 (1) follows directly from Proposition 2.2.2 and
the well-known property of the geodesic continued fractions. However we have to discuss
carefully in order to prove (2).

Theorem 3.4.1 (Lagrange’s theorem for ∆(2, 3, 7)\h).

(1) Let α, β ∈ R∪ {∞} such that α ̸= β, and let ϖ = ϖβ→α be the oriented geodesic on
h joining β to α. Let

B−1
0 ϖ = Ji1, i2, i3, · · ·K∆(2,3,7) (3.39)

be the geodesic continued fraction expansion of ϖ with respect to ∆(2, 3, 7). For k ≥
1, set Ak := gik7 g2 ∈ ∆(2, 3, 7), Bk := B0A1A2 · · ·Ak ∈ ∆(2, 3, 7), and ϖk := B−1

k ϖ.
Then the following conditions are equivalent.

(i) The two endpoints α and β are of the following form:{
α = 1

2w (z − z̄ ±
√
Dz,w)

β = 1
2w (z − z̄ ∓

√
Dz,w)

(3.40)

for some z, w ∈ L such that Dz,w := (z − z̄)2 + 4ηww̄ > 0. Here if w = 0, we
assume (α, β) = (0,∞) or (∞, 0).

(ii) There exists l0 ≥ 1 such that ϖl0 = ϖ0. (In particular the geodesic continued
fraction expansion becomes periodic, i.e., ik+l0 = ik for all k ≥ 1.)

(2) Suppose that the above conditions are satisfied for z, w ∈ L and l0 ≥ 1. Assume that
l0 is the minimal element such that the condition (ii) holds. Put γ0 := Bl0B

−1
0 =

B0A1 · · ·Al0B
−1
0 . Then we have γ0 ∈ Γϖ = O1

z,w (cf. Lemma 2.2.3 (5)), and γ0
gives the fundamental unit of O1

z,w. Equivalently, ρα(γ0) ∈ F (
√
Dz,w) gives the

fundamental unit of UO,z,w/F .

Proof. (1) The implication (ii) ⇒ (i) is clear from the implication (ii) ⇒ (iii) of Proposi-
tion 2.2.2. Indeed (ii) implies Bl0B

−1
0 ϖ = ϖ, and we have B0D ≠ Bl0D by Proposition

3.2.6 (2) (iii). Therefore Bl0B
−1
0 ̸= ±1 is a hyperbolic element in Γϖ. We prove the

implication (i) ⇒ (ii). Since the conditions (i) and (ii) are preserved by replacing ϖ with
γϖ for γ ∈ ∆(2, 3, 7) by Proposition 3.2.6 (1), we may assume ϖ is reduced (i.e., B0 = 1)
and ϖ ∩ D◦ ̸= ∅ by Lemma 3.2.4 (2). We take R ∈ ϖ ∩ D◦, and define Pk, Qk ∈ ϖ

(k ≥ 0) so that ϖ ∩ D =
−−−→
PkQk. By Proposition 2.2.2, there exists a hyperbolic element

in Γϖ. Let γ0 ∈ Γϖ be any hyperbolic element. By replacing γ0 by γ−1
0 if necessary we

assume α is the attracting point of γ0. Then we have R ≤ϖ γ0R. Furthermore, we have

P0 <ϖ R <ϖ Q0 = P1 <ϖ γ0R. (3.41)

Indeed, if γ0R ∈ D, then by Lemma 3.2.4 (3), we obtain γ0 = ±1, which is a con-
tradiction. On the other hand, by Proposition 3.2.6 and Theorem 3.3.2, we have
Pk+1 = Qk and limk→∞ Pk = limk→∞Qk = α. Therefore, there exists l0 ≥ 1 such
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that γ0R ∈ [Pl0 , Ql0). Then we have R ∈ ϖ ∩ D◦ and B−1
l0

γ0R ∈ B−1
l0

γ0ϖ ∩ D and

ϖ and B−1
l0

γ0ϖ = B−1
l0

ϖ are both reduced. Therefore by Lemma 3.2.4 (3), we obtain

B−1
l0

γ0 = ±1, and hence ϖl0 = γ0ϖ = ϖ0.
(2) We may assume ϖ is reduced and B0 = 1. Suppose l0 is minimal. By the

above argument, we see Bl0 ∈ Γϖ = O1
z,w. On the other hand, let γ0 be the hyperbolic

element which generates of Γϖ up to ±1, and assume that α is the attracting point of
γ0. Then, again by the above argument, we obtain γ0 = ±Bl′0

for some l′0 ≥ 1. Now by
the periodicity (ii) and the minimality of l0, we see γ0 = Bl′0

= Bml0 = Bm
l0

for some
m ≥ 1. Then, since γ0 generates Γϖ, we obtain m = 1. Therefore, we get l′0 = l0, and
hence Bl0 = ±γ0 becomes the fundamental unit. This completes the proof.

The β-free version In order to discuss the refined version of the above theorem, we
first prepare some lemmas. For α ∈ R ∪ {∞}, we denote by Gα the set of oriented
geodesics on h which goes towards α. We naturally identify Gα with P1(R)−{α} =
R ∪ {∞}−{α} as follows:

P1(R)−{α} ∼−→ Gα;β 7→ ϖβ→α. (3.42)

We equip Gα with the natural topology of P1(R) via this identification. Then for w ∈ h,
we denote by pα(w) ∈ Gα the unique oriented geodesic on h which passes through w and
goes to α. This defines a map

pα : h → Gα (3.43)

which is clearly continuous open map since pα is a fiber bundle with fibers ϖβ→α.
Now let ϖ = ϖβ→α be an oriented geodesic which satisfies the equivalent conditions

of Proposition 2.2.2 and Theorem 3.4.1. Furthermore we assume that ϖ is reduced and
ϖ ∩ D◦ ̸= ∅. Take R ∈ ϖ ∩ D◦ and a hyperbolic element γ0 ∈ Γϖ which generates Γϖ

up to ±1. We assume that α is the attracting point and β is the repelling point of γ0.
Thus we have

ϖ =
∐
n∈Z

γn0 [R, γ0R). (3.44)

We regard ϖ as an element in Gα. Then Gα−{ϖ} has two connected components.
We denote by

Gα,β,+ := {ϖβ′→α | β′ ∈ (β, α)}, (3.45)

Gα,β,− := {ϖβ′→α | β′ ∈ (α, β)}, (3.46)

those two components. Here we use the notation (3.30). Let S0 = {w ∈ C | |w| ≤√
η, Im(z) ≥ 0} be as before.

Lemma 3.4.2. Let U ⊂ Gα be any connected open neighborhood of ϖ, then we have
γ−1
0 U ⊂ U . In particular for all ϖ′ ∈ U−{ϖ}, we have γ−1

0 ϖ′ ∈ U−{ϖ}.
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Proof. This follows from the assumption that γ0 is a hyperbolic element with attracting
fixed point α and repelling fixed point β.

Lemma 3.4.3. There exists a connected open neighborhood U ⊂ Gα of ϖ such that for
any ϖ′ ∈ U−{ϖ} we have ϖ′ ∩ D◦ ̸= ∅ and

ϖ′ ∩ S0 ∩∆(2, 3, 7)τ3 = ∅, (3.47)

i.e., for every ϖ′ ∈ U −{ϖ}, ϖ′ intersects with D◦ and does not contain ∆(2, 3, 7)-
translations of τ3 inside S0.

Proof. Since D, γ0D, and [R, γ0R] are all compact, there exists a geodesically convex
open set V ⊂ h containing [R, γ0R]∪D ∪ γ0D such that its closure V (in h) is compact.
Then, since the action of ∆(2, 3, 7) on h is properly discontinuous, we see V ∩∆(2, 3, 7)τ3
is a finite set. Thus we take w1, . . . , wr ∈ V such that

{w1, . . . , wr} = V ∩∆(2, 3, 7)τ3. (3.48)

Then pα(V ) ⊂ Gα becomes an open neighborhood of ϖ, and hence

U1 = pα(V )−{pα(w1), . . . , pα(wr)} ∪ {ϖ} (3.49)

is also an open neighborhood of ϖ. Now since ϖ enters D from e0 and V is an open
set containing D, there exists Q ∈ ϖ such that Q ∈ V −S0. Thus we take an open
neighborhood W ⊂ V −S0 of Q in V −S0. Let V0 ⊂ D be an open neighborhood of R in
D. We define an open subset U of Gα to be the connected component of

U1 ∩ pα(V0) ∩ pα(γ0V0) ∩ pα(W ) ∋ ϖ (3.50)

containing ϖ. At this stage we know the following: for any ϖ′ ∈ U−{ϖ}, we have

ϖ′ ∩ V ∩∆(2, 3, 7)τ3 = ∅. (3.51)

Therefore it remains to extend the ∆(2, 3, 7)τ3-free region from V to S0. We prove the
following:

Claim 1. Let ϖ′ ∈ U−{ϖ}, then we have

ϖ′ ∩ S0 ⊂
⋃
n≥0

γn0 V. (3.52)

Now, by Lemma 3.4.2, we have γ−n
0 ϖ′ ∈ U−{ϖ} for all n ≥ 0, and hence γ−n

0 ϖ′ ∈
pα(V0) ∩ pα(γ0V0) for all n ≥ 0. Therefore we see γ−n

0 ϖ′ intersects with V0 and γ0V0

for all n ≥ 0, or equivalently, ϖ′ intersects with γn0 V0 and γn+1
0 V0 for all n ≥ 0. On the

other hand, by the definition, γn0 V is a geodesically convex open set which contains γn0 V0

and γn+1
0 V0. Therefore the geodesic segment of ϖ′ between ϖ′∩γn0 V0 and ϖ′∩γn+1

0 V0 is
contained in γn0 V . Now, since α is the attracting point of γ0, the points in γn0 V converges
to α uniformly as n → ∞. Therefore the geodesic segment of ϖ′ from ϖ′ ∩ V to α is
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contained in
⋃

n≥0 γ
n
0 V . On the other hand since W ⊂ V −S0 and ϖ′ ∈ pα(W ), we see

that ϖ′ ∩ S0 is contained in the geodesic segment of ϖ′ from ϖ′ ∩ V to α. This proves
the claim.

Now let ϖ′ ∈ U−{ϖ} and let P ∈ ϖ′ ∩ S0. Then by Claim 1, there exists n ≥ 0
such that γ−n

0 P ∈ γ−n
0 ϖ′ ∩V . On the other hand, we have γ−n

0 ϖ′ ∈ U−{ϖ} by Lemma
3.4.2. Thus we get γ−n

0 ϖ′ ∩ V ∩∆(2, 3, 7)τ3 = ∅ by (3.51). Therefore P /∈ ∆(2, 3, 7)τ3.
This proves the lemma.

Let U ⊂ Gα be a connected open neighborhood of ϖ satisfying the condition in
Lemma 3.4.3. Then U−{ϖ} consists of two connected components

U+ = U ∩ Gα,β,+ (3.53)

U− = U ∩ Gα,β,−. (3.54)

Lemma 3.4.4. Let ϖ(1), ϖ(2) ∈ U+ (or ϖ(1), ϖ(2) ∈ U−) be geodesics in the same
connected component of U−{ϖ}. By the assumption, we can take R1 ∈ ϖ(1) ∩ D◦ and
R2 ∈ ϖ(2) ∩ D◦. Let

ϖ(1) = JB1,0; i1, i2, . . .K∆(2,3,7), (3.55)

ϖ(2) = JB2,0; j1, j2, . . .K∆(2,3,7) (3.56)

be the geodesic continued fraction expansions of ϖ(1) and ϖ(2) such that B−1
1,0R1 ∈ D◦

and B−1
2,0R2 ∈ D◦. Then we have B1,0 = ±B2,0 and ik = jk for all k ≥ 1.

Proof. We only prove the case ϖ(1), ϖ(2) ∈ U+ since the case ϖ(1), ϖ(2) ∈ U− can be
proved similarly. By Lemma 3.2.4 (3) and the definition of the algorithm, it suffices to
show the following:

Claim 2. Suppose γ ∈ ∆(2, 3, 7) satisfies γD∩ϖ(1) ̸= ∅ and γD∩ϖ(2) ̸= ∅ and γD ⊂ S0.
Then both γ−1ϖ(1) and γ−1ϖ(2) intersect with D◦ and enter (resp. leave) D from the
same edge, say ei (resp. e′j).

By Lemma 3.4.3, γD ∩ϖ(1) and γD ∩ϖ(2) do not contain vertices of γD. Therefore
γ−1ϖ(1) and γ−1ϖ(2) must intersect with D◦. Now let I ⊂ U+ be the closed interval
between ϖ(1) and ϖ(2) contained in U+ (via the identification Gα ≃ P1(R)−{α}). Then
because U satisfies the condition in Lemma 3.4.3, we have

p−1
α (I) ∩ S0 ∩∆(2, 3, 7)τ3 = ∅. (3.57)

Suppose γ−1ϖ(1) enters (resp. leaves) D from ei (resp. e′j). Now, since the endpoints

γgi7τ3 and γgi7τ
′
3 (resp. γgj7τ3 and γgj7τ

′
3) of γei (resp. γe′j) are contained in S0 ∩

∆(2, 3, 7)τ3, they must not be contained in p−1
α (I) by (3.57). On the other hand, the

geodesic segment γei (resp. γe′j) can intersect with ϖ(1) at most once. Therefore, γei

(resp. γe′j) must also intersect with ϖ(2). Finally, if γ−1ϖ(2) leaves (resp. enters) D
from ei (resp. e′j), this contradicts to the assumption that ϖ(2) is an oriented geodesic
which goes to α. This proves the claim and hence the lemma.
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Now we present the refined version of the above theorem in which we can get rid of
the condition on β.

Theorem 3.4.5 (Lagrange’s theorem for ∆(2, 3, 7)\h, β-free version).

(1) Let α, β ∈ R∪ {∞} such that α ̸= β, and let ϖ = ϖβ→α be the oriented geodesic on
h joining β to α. Let

B−1
0 ϖ = Ji1, i2, i3, · · ·K∆(2,3,7) (3.58)

be the geodesic continued fraction expansion of ϖ with respect to ∆(2, 3, 7). For
k ≥ 1, set Ak := gik7 g2 ∈ ∆(2, 3, 7) and Bk := B0A1A2 · · ·Ak ∈ ∆(2, 3, 7). Then the
following conditions are equivalent.

(i) The endpoint α is of the following form:

α =
1

2w
(z − z̄ ±

√
Dz,w) (3.59)

for some z, w ∈ L such that Dz,w := (z − z̄)2 + 4ηww̄ > 0. Here when w = 0,
we assume α = ∞ (resp. 0) if the sign in α is + (resp. −).

(ii) There exist l0 ≥ 1 and k0 ≥ 0 such that B−1
k+l0

α = B−1
k α for all k ≥ k0.

(iii) There exist l0 ≥ 1 and k0 ≥ 0 such that ik+l0 = ik for all k > k0, i.e., the
geodesic continued fraction expansion becomes periodic.

(2) Suppose that the above conditions are satisfied for z, w ∈ L and l0, k0 ≥ 1. As-
sume that l0 is the minimal element such that the condition (iii) holds. Put γ0 :=
Bk0+l0B

−1
k0

= Bk0Ak0+1 · · ·Ak0+l0B
−1
k0

. Then we have γ0 ∈ O1
z,w, and γ0 gives the

fundamental unit of O1
z,w. Equivalently, ρα(γ0) ∈ F (

√
Dz,w) gives the fundamental

unit of UO,z,w/F .

Proof. (1) The implication (ii) ⇒ (i) is clear. The implication (iii) ⇒ (ii) follows directly
from the convergence of geodesic continued fraction (Corollary 3.3.3). We prove (i) ⇒
(iii). Let β′ := z−z̄

w − α, and let ϖ′ := ϖβ′→α be the oriented geodesic joining β′ to
α. Here if w = 0 and α = 0 (resp. α = ∞), we assume β′ = ∞ (resp. β′ = 0). We
use this auxiliary geodesic ϖ′ about which we have already studied in Theorem 3.4.1.
In particular the case where β = β′ is already proved in Theorem 3.4.1. Therefore we
assume β ̸= β′. By Proposition 2.2.2, there exists a hyperbolic element in Γϖ′ . Let
δ0 ∈ Γϖ′ be any hyperbolic element. We assume that α is the attracting point and β′ is
the repelling point of δ0. The key fact to prove this theorem is limn→∞ δ−n

0 β = β′.
By Lemma 3.2.4 (2) and Proposition 3.2.6 (1), we may assume ϖ′ is reduced and

ϖ′ ∩ D◦ ̸= ∅. Take R′ ∈ ϖ′ ∩ D◦. Then we can use Lemma 3.4.3 to take a connected
open neighborhood U ⊂ Gα of ϖ′ such that for any ϖ′′ ∈ U−{ϖ′}, we have ϖ′′∩D◦ ̸= ∅,
and

ϖ′′ ∩ S0 ∩∆(2, 3, 7)τ3 = ∅. (3.60)
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We denote by U+, U− the connected components of U−{ϖ′} as in (3.53), (3.54). Since we
have assumed that β ̸= β′, we haveϖ ∈ Gα−{ϖ′} = Gα,β′,+∪Gα,β′,−. Supposeϖ ∈ Gα,β′,+

(resp. Gα,β′,−). Then, since we have limn→∞ δ−n
0 β = β′ and δ0Gα,β′,+ = Gα,β′,+ (resp.

δ0Gα,β′,− = Gα,β′,−), there exists N1 ≥ 0 such that δ−n
0 ϖ ∈ U+ (resp. U−) for all n ≥ N1.

Take Rn ∈ δ−n
0 ϖ ∩ D◦ for each n ≥ N1. Since α is the attracting point of δ0, we have

limn→∞ δn0Rn = α.
Now, as in the proof of Theorem 3.4.1, we define Pk, Qk ∈ ϖ (k ≥ 0) so that ϖ ∩

BkD =
−−−→
PkQk. Let us fix a constant M ∈ Z≥0 arbitrarily. (We use this later.) By Propo-

sition 3.2.6 and Theorem 3.3.2, we have Pk+1 = Qk and limk→∞ Pk = limk→∞Qk = α.
Therefore, there exist N2 ≥ N1, k0 ≥ M , and l0 ≥ 1 such that

δN2
0 RN2 ∈ [Pk0 , Qk0) ⊂ ϖ, (3.61)

δN2+1
0 RN2+1 ∈ [Pk0+l0 , Qk0+l0) ⊂ ϖ. (3.62)

Let

C−1
0 (δ−N2

0 ϖ) = Jj1, j2, . . .K∆(2,3,7) (3.63)

(C ′
0)

−1(δ−N2−1
0 ϖ) = Jj′1, j

′
2, . . .K∆(2,3,7) (3.64)

be the geodesic continued fraction expansions of δ−N2
0 ϖ and δ−N2−1

0 ϖ such that

C−1
0 RN2 ∈ D◦ and (C ′

0)
−1RN2+1 ∈ D◦. (3.65)

Then, by Lemma 3.4.4, we have C0 = ±C ′
0 and jk = j′k for all k ≥ 1. On the other

hand, from the geodesic continued fraction expansion (3.58), we also obtain the following
geodesic continued fraction expansions:

B−1
k0

ϖ = Jik0+1, ik0+2, . . .K∆(2,3,7), (3.66)

B−1
k0+l0

ϖ = Jik0+l0+1, ik0+l0+2, . . .K∆(2,3,7), (3.67)

Now we apply Lemma 3.2.4 (3) to

• the reduced oriented geodesic: C−1
0 (δ−N2

0 ϖ) (resp. (C ′
0)

−1(δ−N2−1
0 ϖ)),

• point: z = C−1
0 RN2 ∈ D◦, (resp. z = (C ′

0)
−1RN2+1 ∈ D◦),

• γ = B−1
k0

δN2
0 C0 ∈ ∆(2, 3, 7), (resp. γ = B−1

k0+l0
δN2+1
0 C ′

0 ∈ ∆(2, 3, 7)).

Because we have

• γC−1
0 (δ−N2

0 ϖ) = B−1
k0

ϖ (resp. γ(C ′
0)

−1(δ−N2−1
0 ϖ) = B−1

k0+l0
ϖ) is reduced by the

definition of the geodesic continued fraction expansion,

• γz = B−1
k0

δN2
0 RN2 ∈ D (resp. γz = B−1

k0+l0
δN2+1
0 RN2+1 ∈ D) by (3.61) (resp.

(3.62)),
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we obtain

B−1
k0

δN2
0 C0 = ±1 and B−1

k0+l0
δN2+1
0 C ′

0 = ±1. (3.68)

Then it follows that both (3.63) and (3.66) give the geodesic continued fraction expansion
of C−1

0 δ−N2
0 ϖ = B−1

k0
ϖ, and both (3.64) and (3.67) give the geodesic continued fraction

expansion of (C ′
0)

−1δ−N2−1
0 ϖ = B−1

k0+l0
ϖ. Therefore, by using Proposition 3.2.6 (1), we

finally obtain

ik0+k = jk = j′k = ik0+l0+k (3.69)

for all k ≥ 1. Thus we obtain (iii).
(2) We may assume β ̸= β′, ϖ′ is reduced and ϖ ∩ D◦ ̸= ∅, where β′ and ϖ′

are the same objects as in the proof of the implication (i) ⇒ (iii). Suppose that the
equivalent conditions (i) ∼ (iii) are satisfied. More precisely, suppose that the condition
(iii) is satisfied for k0, l0, and that l0 is the minimal element such that the condition
(iii) holds. Then clearly the condition (ii) is also satisfied for the same k0 and l0. By
the condition (ii), we have Bk0+l0B

−1
k0

α = α. Therefore, by Lemma 2.2.3 (5), we obtain

γ0 := Bk0+l0B
−1
k0

∈ Kz,w∩O1 = O1
z,w = Γϖ′ . On the other hand, let δ0 be the hyperbolic

element which generates Γϖ′ = O1
z,w up to ±1, and assume that α is the attracting point

of δ0. Then, by the above argument, especially from (3.68) and (3.69), there exist k′0 ≥ k0
and l′0 ≥ 1 such that ik+l′0

= ik for all k > k′0 and δ0 = ±Bk′0+l′0
B−1

k′0
. (Here we choose

M = k0 in the above argument.) Now, by the periodicity (iii), we have Ak+l0 = Ak for
all k ≥ k0. Therefore we have γ0 = Bk0+l0B

−1
k0

= Bk′0+l0B
−1
k′0

by the definition of Bk.

Thus, again by the periodicity (iii) and the minimality of l0, we obtain

δ0 = ±Bk′0+l′0
B−1

k′0
= Bk′0+ml0B

−1
k′0

= (Bk′0+l0B
−1
k′0

)m = γm0 (3.70)

for some m ≥ 1. Then, since δ0 generates Γϖ′ , we obtain m = 1. Therefore, we get
l′0 = l0, and hence γ0 = Bk0+l0B

−1
k0

= ±δ0 becomes the fundamental unit. This completes
the proof.

Remark 3.4.6. The results in [16] and [1] are interesting, and seem to be related to the
“β-free” version of the periodicity. Although their results do not cover the case of the
(2, 3, 7)-triangle group, they compare the geodesic continued fractions (Morse codings)
and the “boundary expansions” of geodesics which essentially depends only on the one
end point α. It may be possible to prove (1) of Theorem 3.4.5 using the similar arguments
to those in [16] and [1]. Our proof is different from their methods.

3.5 Examples

Now we present some examples to illustrate our main theorems (Theorem 3.4.1 and
Theorem 3.4.5). We describe the following items:

(I) Input data: (α, β,ϖβ→α), where α, β ∈ R ∪ {∞} such that α ̸= β and ϖβ→α is
the oriented geodesic joining β to α as before.
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(II) The resulting geodesic continued fraction expansion of ϖβ→α.

Suppose the geodesic continued fraction expansion of ϖβ→α becomes periodic (which is
the case we are mainly interested in). As in the classical theory of continued fraction,
we denote by

ϖβ→α = JB0; i1, . . . , ik0 , ik0+1, . . . , ik0+l0K∆(2,3,7), (3.71)

the periodic geodesic continued fraction expansion with period ik0+1, . . . , ik0+l0 . Then,
furthermore we present

(I)′ The data z, w ∈ L for which α can be expressed as in Theorem 3.4.5 (i), and the
associated quadratic extension Kz,w ≃ F (

√
Dz,w) over F .

(III) The fundamental unit of O1
z,w ≃ UO,z,w/F obtained from the period of geodesic

continued fraction expansion. Cf. Theorem 3.4.1 and Theorem 3.4.5.

We put θ :=
√
η as in (3.9), (3.10), (3.11). Moreover, for the geodesic continued

fraction expansion (3.2) of ϖ, we put Ak := gik7 g2, Bk := B0A1 · · ·Ak and ϖk := B−1
k ϖ.

The geodesic continued fraction expansions in the following examples were computed by
plotting the geodesics ϖk, from which the next ik+1 can be visually determined.

Example 3.5.1. (I) Input: α = 0, β = ∞, ϖ := ϖβ→α.

(I)′ The corresponding data: z =
√
η, w = 0, Dz,w = 4η.

The associated quadratic extension: Kz,w ≃ F (
√
η) = L.

(II) The geodesic continued fraction expansion:

ϖ = J1; 3,−2, 3K∆(2,3,7). (3.72)

(III) From the period, we obtain the following fundamental unit γ0, i.e., a generator of
O1

z,w = Γϖβ→α
up to ±1:

γ0 := B3B
−1
0 = (g37g2)(g

−2
7 g2)(g

3
7g2) (3.73)

=

(
−1− θ − θ2 + θ3 + θ5 0

0 −1 + θ − θ2 − θ3 − θ5

)
(3.74)

=

(
−1− η − (1− η − η2)

√
η 0

0 −1− η + (1− η − η2)
√
η

)
. (3.75)

Under the identification (2.18), the fundamental unit ε0 = ρα(γ0) of UO,z,w/F can
be written as

ε0 = −1− η + (1− η − η2)
√
η ∈ UO,z,w/F . (3.76)

This example gives an example in which the traditional k-th convergent xtrad
k does

not converges to α = 0. Indeed, by (3.23), we see

xtrad
3k−1 = ((g37g2)(g

−2
7 g2)(g

3
7g2))

k∞ = ∞ ↛ 0. (3.77)
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Example 3.5.2. (I) Input: α = (1 − η2)
√
η +

√
1 + 3η − 2η2, β = (1 − η2)

√
η −√

1 + 3η − 2η2, ϖ := ϖβ→α.

(I)′ The corresponding data: z = (1− η2)
√
η, w = 1, Dz,w = 4(1 + 3η − 2η2).

The associated quadratic extension: Kz,w ≃ F (
√
1 + 3η − 2η2).

(II) The geodesic continued fraction expansion:

ϖ = J1; 1,−1K∆(2,3,7). (3.78)

(III) From the period, we obtain the following fundamental unit γ0, i.e., a generator of
O1

z,w = Γϖβ→α
up to ±1:

γ0 := B2B
−1
0 = (g7g2)(g

−1
7 g2) (3.79)

=
1

2

(
−1 + 2θ − θ2 − θ5 −1

2− θ2 − θ4 −1− 2θ − θ2 + θ5

)
(3.80)

=
1

2

(
−(1 + η) + (2− η2)

√
η −1

2− η − η2 −(1 + η)− (2− η2)
√
η

)
. (3.81)

Under the identification (2.18), the fundamental unit ε0 = ρα(γ0) of UO,z,w/F can
be written as

ε0 =
1

2
((2− η − η2)α+−(1 + η)− (2− η2)

√
η) (3.82)

= −1

2

(
1 + η +

√
η2 + 2η − 3

)
∈ UO,z,w/F . (3.83)

By Corollary 3.3.4, the traditional k-th convergent of the following formal continued
fraction converges to (1− η2)

√
η +

√
1 + 3η − 2η2.

(1− η2)
√
η +

√
1 + 3η − 2η2 = a1 −

b1

c1 + a−1 −
b−1

c−1 + a1 −
b1

c1 + a−1 −
b−1

c−1 + · · ·

.

(3.84)

Therefore, we can simplify this continued fraction using the formulas (3.9), and obtain
the continued fraction (1.1) presented in Section 1.

Example 3.5.3. We give an example of “β-free” variant of Example 3.5.2

(I) Input: α = (1− η2)
√
η +

√
1 + 3η − 2η2, β = −1, ϖ := ϖβ→α.

(I)′ The corresponding data: z = (1− η2)
√
η, w = 1, Dz,w = 4(1 + 3η − 2η2).

The associated quadratic extension: Kz,w ≃ F (
√
1 + 3η − 2η2).
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(II) The geodesic continued fraction expansion:

ϖ = Jg−1
7 ; 3, 2,−1, 1K∆(2,3,7). (3.85)

(III) From the period, we obtain the following fundamental units γ0 ∈ O1
z,w and ε0 =

ρα(γ0) ∈ UO,z,w/F , which agrees with the result in Example 3.5.2.

γ0 := B4B
−1
2 (3.86)

=
1

2

(
−(1 + η) + (2− η2)

√
η −1

2− η − η2 −(1 + η)− (2− η2)
√
η

)
(3.87)

ε0 = −1

2

(
1 + η +

√
η2 + 2η − 3

)
∈ UO,z,w/F . (3.88)

Example 3.5.4. (I) Input: α =
√
η +

√
2η, β =

√
η −√

2η, ϖ := ϖβ→α.

(I)′ The corresponding data: z =
√
η, w = 1, Dz,w = 8η.

The associated quadratic extension: Kz,w ≃ F (
√
2η).

(II) The geodesic continued fraction expansion:

ϖ = Jg2;−2, 3,−3, 3,−2, 2,−3, 3,−3, 2K∆(2,3,7). (3.89)

(III) From the period, we obtain the following fundamental unit γ0, i.e., a generator of
O1

z,w = Γϖβ→α
up to ±1:

γ0 := B10B
−1
0 (3.90)

=

(
−11− 6θ − 28θ2 − 18θ3 − 12θ4 − 8θ5 −8− 22θ2 − 10θ4

−6− 18θ2 − 8θ4 −11 + 6θ − 28θ2 + 18θ3 − 12θ4 + 8θ5

)
(3.91)

=

(
−(11 + 28η + 12η2)− (6 + 18η + 8η2)

√
η −8− 22η − 10η2

−6− 18η − 8η2 −(11 + 28η + 12η2) + (6 + 18η + 8η2)
√
η

)
.

(3.92)

Under the identification (2.18), the fundamental unit ε0 = ρα(γ0) of UO,z,w/F can
be written as

ε0 = −11− 28η − 12η2 − (6 + 18η + 8η2)
√
2η ∈ UO,z,w/F . (3.93)

Example 3.5.5. (I) Input: α = 2 +
√
4− η, β = 2−√

4− η, ϖ := ϖβ→α.

(I)′ The corresponding data: z = 2
√
η, w =

√
η, Dz,w = 4η(4− η).

The associated quadratic extension: Kz,w ≃ F (
√
4η − η2).

(II) The geodesic continued fraction expansion:

ϖ = Jg7g2g−1
7 ; 3, 3,−2, 2,−3, 3,−3, 3,−3, 2,−2, 3K∆(2,3,7). (3.94)
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(III) By computing the period γ0 := B10B
−1
0 ∈ O1

z,w we obtain the following funda-
mental unit ε0 = ρα(γ0) of UO,z,w/F :

ε0 = −(28 + 80η + 36η2)− (16 + 43η + 19η2)
√

4η − η2 ∈ UO,z,w/F . (3.95)

Example 3.5.6. (I) Input: α = e, β = 1/e, ϖ := ϖβ→α, where e is Euler’s numebr.

(II) The geodesic continued fraction expansion:

ϖ = Jg27g2g
−2
7 ;3, 3,−3,−3, 3,−3, 3,−3,−3, 2,−2, 2,−3, 3,

− 2, 3, 2,−2, 3,−3,−3, 2,−2, 2,−2, 3,−3,

2,−2, 2,−2, 3, 2,−1, 2, 3,−3,−2, 1,−1, . . .K∆(2,3,7). (3.96)

The regularized 40-th convergent xreg
40 is approximately xreg

40 ≒ 2.7182818284590431,
where e is approximately e ≒ 2.7182818284590452.
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